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ON A METHOD OF SOLVING PROBLEMS OF THE BENDING OF RODS AND
PLATES OF PIECEWISE-CONSTANT STIFFNESS®

V.I. TRAVUSH

By using an effective procedure /2/ expansions were constructed in /1/
of an arbitrary function in the eigenfunction integral of a boundary
value problem for second-order differential equations given in an
interval with different sections of stepwise-changing physical character-
istics.

This procedure is applied below to construct the expansion of an
arbitrary function in an eigenfunction series for fourth-order equations
given in a finite interval with an arbitrary quantity of stepwise-varying
characteristics. The finite integral transforms obtained in such a
manner can be utilized in solving different bending problems for rods
or plates with piecewise-varying stiffness, which enables us to formalize
the procedure for solving specific problems. The need to solve differential
equations given in a composite interval also arises in a study of the
state of stress of layered elastic media. A general approach to the
solution of problems of mechanics for layered media is proposed in /3/,
and is based on extending the method of initial parameters and results
in an effective calculational procedure.

1. We construct the expansion of the function f (z) satisfying the Dirichlet conditions
in a series of eigenfunctions y (z) of the boundary value problem for a fourth order differential
equation having stepwise varying physical constants in sections comprising the interval [0, L].
The boundary value problem in question can be written in the form

YV (2) + My (2)=0 (O<z<b) M=o’ (1.1)

YV (@) + My @) =0 (ra<z<by), M=o,
D
(b= L, by=1L)
=1

Here A are the eigenvalues of the problem under consideration, and the coefficients a;
describe the physical constants in a section j of length ;.
The conditions on the section boundaries can be written in general form as follows:

kyy" (0) = Ky’ (0), ksy” (0) = koy (0) (1.2)
ke'y" (L) = k'Y (L), ka*y” (L) = ko'y (L)

where the coefficients k; enable us to take into account different rod boundary conditions.
The conditions for the sections to be matched

YO (b;— 0y = pig®0 (b, 4+ 0)  (i=1,2,3,4) (1.3)
must still be added to the conditions on the section boundaries (y® (z) is the derivative of
order { of the function y (z), and p;; are given coefficients).

To solve the problem according to /1, 2/, we consider the following partial differential
equation

Pu (z, du (z,
Ln D) e &l g <a<by) (1.4)

with conditions on the section boundaries corresponding to (1.2) and (1.3) and the initial

condition
u (0, z) = f(z) (1.5)
instead of (1.1) with conditions (1.2) and (1.3).
Solving (1.4) by a Laplace transformation and taking account of condition (1.5), we

obtain an ordinary differential equation with right-hand side for the Laplace transform U (z, p)
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UV (@ p)—pU(z p)=—f @) Ga<z<b) (1.6)
The solution of (1.6) can be written in the form
L
U p=—6@t pi@d (.7)
0

where G (z, §, p) is Green's function of (1.6). The function u(z,t) is determined by an inverse
Laplace transform, and taking the initial condition (1.5) into account, we obtain the desired
expansion of the function f (2) (p, are the roots of the denominator in Green's function)

L
f@)=— DresG(z, & pa)f (&) dE (1.8)

0y

Therefore, the construction of Green's function of (1.6) should be the next step in
solving the problem. To do this, the solution of the homogenecus Eq.(1.6) must be obtained,
which reduces to finding the eigenfunctions of the operator v (z, p) in this case. Starting
with the right end of the interval, say, and moving sequentially from the last section to a
certain section j, we find that

2
Uj(z, \)= zll E s (z, &) (1.9)
My (z, h) == é fam-1,5(M) Pm(kj ;— z), M=p (1.10)

4
aj @ )= 3 fom ) P55 — )

ne

The Krylov functions §, T, U, V are denoted successively in terms of P,in the expressions
presented. The selection of the function Uj(z, ¥v) in the form (1.9) we can immediately
determined the coefficient of P, in {(1.10) for the next section without solving the system
of algebraic equations. Therefore, recursion relations have been obtained that connect the
values of the coefficients f,(A) successively, starting with the next section with number k

fe= ks, fa=ha*, fu=0 (i=3,4,5,6), foe=kho", fox=F2*

and later
fni (M) =08m, 1@, 511 (b)) (m=1,2, 3, %) (1.11)
;oo i1 .
45“' B (?]‘]:-) Piy (Di'j —— A.j_ll(Di_g,j (112)

Similarly, taking account of the boundary conditions on the left-hand side and moving
successively frofh the first section to section j, we obtain the eigenfunction

2
Uiz, \y= -§1 CaV¥ij(z, ) (1.13)

4
¥y (z, M) = mﬂzl gam-1, § (M) P (A (x — b)) 1.14)
¥z, M)= mZ__l Gom, (M) P (A (x — b;4))

For the first section

gn=rks, gun=k, ga=0 (i=3,4,5,6)
and later -
&n,j+1 (M) =085, ;¥ j (b))

The functions Y, ; are determined from a formula similar to (1.12). Taking the conjugate
of the functions Uj{(z, A) defined by (1.9) and (1.13), we obtain Green's function of (1.6)

[ ME0, 2, HMP0) Ba<z<E<b)
T MEALE M M) (b <E<z<Dy
Gly =M} (M, z, § M7 (M)
(i< z<bi < .. Kby <ELH,< ... <L)
G?‘-:M?i (Av E! ‘t)Mi-l (7")
Giag <E< b <. <bju<z<lb;<...<L)

1 (1.15)
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My =20y ¥y () — Qi (2), M = Qs'y; (2) — Q' D2 () (1.16)
o’ =n§:}1 Won,; (E)tn ;(B)y Q2 anl Won1,;(8) tn, 5 (B) (1.17)
; 3 i 3
QSJ :nzl (D;m,j (5) Sn,j (.E.)v QAJ = n§1 (D:n—l, i (E) Sn, j (E)y ]‘/[j = )‘jSW,'
W’I-i:ngl tnj €) 3n+3,]'(§) + 8n5 (E) tnss, 5 (E), mj(g):}"jsWi’ (1'18)
Here
(1.19)

tlj:(D5j(de - (Daj(Dsj, t!j:q)2]m5j - q)l_,mcj,
ly; =Dy jDyg; — Dy,Dy;
tay = D1 Vg; — Do jD2j, t5;= Dy Dg; — Dy D1y,
te ;o= D5, Dy ; — DD,

The functions s&;(§) are obtained from #; (§) by appropriate replacement of ® by ¥ with

the same subscripts.
Substituting (1.15) into (1.8), we write the desired expansion of the function f (x)

i—1 Yp
fay= =30 0 3§ MY 0o & 2 F @O + (1.20)
n pr=1 b, -1

x b]'
o' ) [ § M G & 2 @2+ MY O 2, B @B+
L'j—l x
F—1 bp*l
3§ Ml 29I &) a<z <)
=} D
2 Using the results obtained, we consider a rod with hinged supports that have two
sections [, and l, of different physical characteristics a, and a,. Setting k=2, bk~ = k' =
ky =kt =0, and kg =kt =k, =k," =1, we write the expression for Green's function for the
case under consideration
[Tw)yn—V@wnle™ 0<s<E<])
[y, (2) 15 — Dy (@) 1) 20,7 O<E<T 2T
p RIT (u)rs—V ()] [297"] O<a<<h<TE<L)
T Bs—uayra—V Bs —wra] [20"] (0<E<L< )
RITBs —u)ri —VBs—wrdo 0<h<<E<z<TL)
R¥y (z)ry — Vs, (2) ra 20,71 O<lh<z<<E<L)

(2.1)

Here

n=1
[ 28 )n-l

o=AW Q) (=1,2), Bi=hL, L=h+0b, 8,=w (2

4
ri=r;& (=12,...,8), fi=hli, ui =hz, vy=A R= Hsu

The functions ®@;; and V¥;, are defined by (1.10) and (1.14) with coefficients f and g
that have the following form for the case under consideration
famo1,1 (M) = 6,,Ppr (Bs), fom,» (M) = 8,Qm(Ba) (m=1, 2, 3, 4)
&am-1,1(A) = B;lpm (ﬁl); 82m, 2,(7") = 57»‘0m (ﬁl)

(2.2)

Here P, are the Krylov functions 7,8, V,U and Q,are V, U, T, S.
The remaining coefficients in (2.1) can also be expressed in terms of the Krylov functions

and also ®(t) and ¥ (§):
n=V@)tu +U@®y + T @)itg, rs=T () tu +
S W) ta + V() ta,
ry = ¢ (1) Qa1 + 26, () gy + ¢4 (1) Py, 74 = €5 (00) Py +
2¢; () @5 + ¢4 (1) P
co (Bs — 1) Wag + €2 (Bs — va) Yoo + 26 (Bs — va) Yo
re = ¢ (By — vy) Wia + €3 (Bs — va) Wio + 2¢; (B — va) ¥
re=T By — ) sn + U (Bs — ve) Sy + V (Bs — ) 511,
re=T @)ty + S @)ty +V(n)iy

ry =



473

The functions ¢;;(§) occurring here are defined by (1.19), while the functions ¢; consist
of combinations of hyperbolic functions

¢, (B) =shPsinpy, ¢ () =ch PpsinpP —shpcospP
¢, (B) = chPsinP + shpcosP, cs () =chPcosp

We also present an expression for the frequency function W (A), which, when equated to
zero, enables us to determine the eigenvalues of the operator under consideration

W (A = &1 ee; (By) € (Ba) — €264 (By) €4 (B2) — 48,85¢0(B1) €1 (B2} — 48584c; (B1) cs (B2)] 2.3)

We now present the desired expansion of the function f{(z) for the interval consisting of
the two sections

oo

f(z)= 2 amsinhz —amshry,z 0Lz Ch) (2.4)
n=t
flry= 3 by,-sindg, (L —x) —ba,shhg (L — 1) (<< <L) (2.3)
n =1

The series coefficients in these expressions are determined by formulas that are similar
to the expressions for the coefficience of classical Fourier series, but more awkward

1, L
arn=mi* (digs — da*qa) f &) dE — 4Bm3* § (dags + duga) f (}) &2
0 N
L L
o =m7" § (dsga — dvg:) £ (€) 48 — 4Rm3" § (dogs + dog) f (B)
0 A
iy L

Byn==2m7" { (doqs + doga) f ()& + Rmz*  (duogs — dur*an) f (B) &
0 L
L

L
byn = 2m;* S (dioqr +- d1sga) f ) dE + Rm;! g (d1ags — d117gs) f (E) dE
0 L
Here

@: =sinhpl, ge=sh Mk, gs==sinhy (L —§), ga=shim(L—¥)
my =l Bymy + msla':/ BPB:, ma=IlmsBs+miy ‘;/m
mg = e1*C120Ca11 — £97Ca11Ce23 — 2N13Ca11C423 + 2NaCr1iCane
My == 1" Ci11C202 — 827 CamCerr + 2R13C2110122 — 2R24Ca11Ca
dy == e1* canaCiyy + €3 CazaCin + 4N13C122C511 — ANaaCoraCant
dot = €17 Coop - 827Cazz, dy=2 (€3*Cs12 + 84*Cs12), Cyip=shP;sin Py
dy =2 (e57Ca12 + 247Ca12), == — 2{esC321 -+ &4 Cs21),
cgir = ch P; sin B
ds = &1 Canalto — 5" CazaCans — 4N13C122C811 — AMaaCorzCant
di=—2 (’33+CBZI + 84+Cs1z), ds=¢g7r"cs1 + egtesan, Cgil — sh 5& ch ﬁx-
do=—=87"Cen1 + €5 Csm1, dut =s85 Con1 €6 Car1, Cgix = ch B; cos By
o= €57 o110t + €6 Ca11C720 + 4NT3C111C822 — 4N2d CoraCoza
dip = €77Cs13 -+ Be Co1z, dis==€7*Cp12 + €57Coa1, Couk = sh P; cos Py
d1e = &5t Co116T20 — €8V Ca11C723 — 4N3iCa11Caze — 4NT3C111CE22
Coik == €0 By sin Py, €k = Cair ok Cairs  Chik == Crir o Coirr Mix = B; 0
erf =iy - nge, EF =nynm, GE=081 68, eF= 8" + 651
g5t b= nig -5, eet=njs - nay, eF=1~0114-08s est=08,7104
3. an an illustration of the application of the formulas obtained we consider the forced
vibrations of a beam with two sections of length I, and l,, which have different respective

stiffnesses B, and B,. As is well-known, the modes of steady forced vibrations of a beam
satisfy the following equation in this case:

oV (2) ~ Mg (@) =g () (O<=z<h) 3.1
Vi)~ A () =q(2) (h<=z<L)
Here

- (5)
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(p is the frequency of natural vibrations of the beam, and m; is the mass per unit length of
the sections).

To solve the equation obtained we expand the functions ¢(z) and g¢(z) in the series (2.4)
and (2.5) and, as usual, substitute them into (3.1) to find that the coefficients of the series
(2.4) and (2.5) for the function g¢{s are expressed in terms of the known coefficients ¢
and dip according to the relationships

P SN _dm (i =1,2) (3.3

m xx‘n + a“ ] in }‘i‘n"i“ at =1, N
Cin din

a, Mobat TR o (=34

The coefficients ¢, and dip are determined from (2.6) for f(&) = q(&).

To evaluate the coefficients by means of (3.3), it is alsc necessary to know the eigen-
values 4 which depend on the relationships between the characteristics «;, and a,. We assume
the stiffness of one section to be double the stiffness of the other (By:B,=2) for identical
constant mass, and each section to equal half the span of the beam. The eigenvalues A; for
this case, as obtained in the solution of (3.2), are presented below

i 1 2 3 4 5 6 7

A 2,64 5,28 7,92 10,56 43,2 15,85 18,49
Ay 2,83 5,79 8,54 11,55 14,27 17,29 20,02
A2i 3,14 6,28 9,42 14,27 15,70 18,85 21,99

We give here the values of Ay from beams with stiffnesses B, and B;, respectively. Halving
the stiffness of one of the sections results in a change of approximately 15—25% in the rod
vibration frequency as compared with a rod of constant stiffness. The frequencies of natural
vibrations for a rod with the above-mentioned relationship of variable stiffness can be
determined from (3.2) by using the middle row.
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